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ABSTRACT 

 

The difficulty of determining how many observations to collect is a source of inefficiency 

in consumer behavior research. Group sequential designs, which allow researchers to perform 

interim analyses while data collection is ongoing, could offer a remedy. However, they are 

scarcely used in consumer behavior research, probably owing to low awareness, perceived 

complexity, or concerns about the validity of this approach. This paper offers a tutorial on group 

sequential designs and introduces Pre-Registered Interim Analysis Designs (PRIADs): A 

practical five-step procedure to facilitate the adoption of these designs in marketing. We show 

that group sequential designs can be easily adopted by marketing researchers, and introduce a 

companion app to help researchers implement them. We demonstrate multiple benefits of 

PRIADs for researchers engaged in confirmatory hypothesis testing: They facilitate sample size 

decisions, allow researchers to achieve a desired level of statistical power with a smaller number 

of observations, and help conduct more efficient pilot studies. We validate this cost-saving 

potential through a comprehensive re-analysis of 212 studies published in the Journal of 

Consumer Research, which shows that using PRIADs would have reduced participant costs by 

20% to 29%. We conclude with a discussion of limitations and possible alternatives to PRIADs. 

 

Keywords: experiments, experimental methods, power analysis, group sequential designs, meta-

science, statistics 

  



 

 

INTRODUCTION 

 

The publication standards of top marketing journals have increased noticeably over the 

past decade. Following repeated calls for increased rigor and relevance (e.g., Inman et al. 2018; 

Madan et al. 2023; Schmitt et al. 2021), the average consumer behavior paper published in the 

Journal of Consumer Research now includes more studies than before (Janiszewski and van 

Osselaer 2021), and the data in these studies are becoming more costly to collect (owing to the 

need for more representative and larger samples, the use of incentive-compatible paradigms, the 

inclusion of field studies, etc.; Krefeld-Schwalb and Scheibehenne 2022). These rising standards 

have prompted researchers to identify more efficient ways of collecting and analyzing data. In an 

influential tutorial, Meyvis and van Osselaer offered researchers suggestions to increase the 

effect size (and therefore the statistical power) of their experiments (Meyvis and Van Osselaer 

2018). They argue that using within-subjects comparisons, adding statistical controls, removing 

inattentive participants, eliminating “noise factors” in the treatment, or selecting a more 

homogenous population can help researchers achieve adequate power without collecting an 

inordinate number of participants. 

This tutorial, however, did not address an important source of inefficiency in consumer 

research: The difficulty of determining the appropriate number of observations to collect for a 

study. This variable is a crucial input in any experimental design: All else equal, the more 

observations are collected, the more power researchers possess to detect an effect of a given size. 

However, larger samples impose a cost as they require more time and money to recruit 

participants, purchase experimental materials, pay research assistants, monitor data collection, 

handle data quality issues, and so on. For these reasons, sample size decisions reflect a difficult 



 

 

balancing act on the researcher’s part. If they collect “too many” observations (i.e., more than 

what they need to detect their effect of interest with a reasonable amount of power), researchers 

have effectively wasted time and money that could have been put to another productive use (e.g., 

a follow up study, or another research project). In contrast, if researchers collect “too few” 

observations (i.e., fewer than they need to achieve an acceptable level of statistical power), they 

have also wasted time and money running a study that yields an uninformative answer.  

The oft-suggested solution to this problem is to conduct a power analysis: Researchers 

specify their expected effect size and compute the number of observations required to detect this 

effect with a given statistical test and a given level of statistical power. For instance, a researcher 

could calculate that they need to collect 128 observations (total) to have an 80% chance of 

detecting effect size of d = .5 with a two-sample t-test. 

This type of power analysis, however, is only practical if researchers know the effect size 

that their experiment will yield. Unfortunately, researchers are typically unable to make this 

determination. First, intuitive estimates of effect size are prone to error: The effect size that an 

experiment will produce is influenced by such a wide array of parameters (Meyvis and Van 

Osselaer 2018) that even seasoned researchers struggle to predict the effect size of a given design 

(Giner-Sorolla et al. 2023). Second, estimating the effect size with a “pilot study” is impractical: 

The number of observations required to obtain an informative estimate of the effect size is orders 

of magnitude larger than the sample size required to detect a significant effect (Simonsohn 

2014). Finally, meta-analytical estimates of effect sizes are distorted by publication bias and 

follow-up bias (Albers and Lakens 2018), and are often obtained from studies that are too 

dissimilar to be informative. Ultimately, the fact that consumer researchers frequently base their 

power analysis on the arbitrary (and inconsistent) “small,” “medium,” and “large” effect sizes 



 

 

offered by Cohen (1988) highlights the imprecise nature of the typical power analysis in a 

marketing paper (Correll et al. 2020; Sawyer and Ball 1981). 

In this paper, we argue that a set of statistical techniques called group sequential designs 

can offer a potential solution to this problem. Group sequential designs give researchers the 

opportunity to collect and analyze their data in sequential batches, and to terminate data 

collection early if the data shows overwhelming (or underwhelming) evidence against the null 

hypothesis. This flexibility allows researchers to better manage the uncertainty regarding the 

effect size that their experiments will produce, and to collect a smaller number of observations 

(on average) to achieve a desired level of statistical power. Despite their usefulness and their 

widespread use in other disciplines (e.g., clinical trials), these designs have not been widely 

adopted by marketing researchers.  

This paper is divided into six sections. We first describe the theory and statistical 

intuition that underlie group sequential designs, and explain why and how they allow researchers 

to conduct repeated hypothesis tests on their data without inflating false-positive rates. In the 

second section, we introduce Pre-Registered Interim Analysis Designs (PRIADs): A practical 

procedure to facilitate the adoption of group sequential designs in consumer research. We walk 

researchers through the five simple decisions required to create a PRIAD, offer pragmatic 

guidelines on how to make these decisions, and explain the conditions under which PRIADs 

offer a valid alternative to traditional fixed sample-size designs. We also introduce a web 

application that allows researchers to create PRIADs, to preview their expected impact, and to 

generate the text required to pre-register them. In the third section, we discuss benefits of 

PRIADs to marketing researchers: We explain their ability to manage effect size uncertainty, to 

increase the efficiency of hypothesis testing, and to conduct pilot studies without wasting data. In 



 

 

the fourth section, we validate their cost-saving potential through a re-analysis of 212 studies 

published in the Journal of Consumer Research: Our results suggest that using PRIADs could 

have saved the authors of these studies up to 29% of their participant costs. In the fifth section, 

we outline the circumstances in which PRIADs are not appropriate. We conclude with a general 

discussion in which we summarize the key aspects of our proposal, and highlight limitations and 

alternatives to PRIADs. 

 

THE THEORY OF SEQUENTIAL ANALYSIS 

 

The Statistical Intuition 

 

In marketing and other behavioral disciplines, “Fixed N” designs are the norm for 

confirmatory hypothesis testing. In a Fixed N design, researchers must perform their hypothesis 

tests after having collected the entirety of their planned sample for the experiment: If they 

conduct additional hypothesis tests while data collection is ongoing, or if they collect additional 

data after finding a non-significant result, they will increase the false-positive rate of their 

experiment (Simmons, Nelson and Simonsohn 2011). 

Other types of designs, however, do not have this constraint. In particular, a set of 

techniques called group sequential designs enables researchers to collect data in a set of 

sequential batches (called “stages”), to perform hypothesis tests at each stage, and to stop data 

collection as soon as a hypothesis test is able to reject the null — all without inflating the false-



 

 

positive rate of their experiment (Lakens 2014)1. These designs have become common in 

medical trials (as researchers are interested in stopping the trial as early as possible if there is 

sufficient evidence for the efficacy of a drug or procedure) but have not yet made their way to 

the marketing literature. 

If group sequential designs allow researchers to perform multiple hypothesis tests (versus 

only one in a Fixed N design), how can they maintain false-positive rates at a nominal level 

(typically α = .05)? The answer is: (i) by requiring that the number and timing of the analyses are 

determined in advance, and (ii) by adjusting the significance thresholds against which the 

hypothesis tests are conducted. In a Fixed N design, researchers perform a single hypothesis test 

against 𝑝𝑐𝑟𝑖𝑡 = .05. This rejection threshold guarantees that they will falsely reject the null 5% of 

the time when the null is true. To achieve the same false-positive rate, the hypothesis tests of a 

group sequential design must all be performed against more stringent rejection thresholds, such 

that the cumulative probability of falsely rejecting the null across all the hypothesis tests is 

exactly equal to 5%. 

To illustrate, consider the group sequential design shown in Figure 1: A researcher will 

collect 50% of their desired sample and perform an interim test for significance. If this interim 

test is not significant, they will collect the remaining 50% of the observations and perform a final 

test on the full sample.  

 

FIGURE 1 

A GROUP SEQUENTIAL DESIGN WITH TWO STAGES 

 
1 The group sequential designs that are the focus of this paper are one of multiple techniques that allow 

researchers to perform repeated hypothesis tests on their data. For the interested reader, we discuss some of these 

other techniques in the general discussion, under the section “potential alternatives to PRIADs”. 



 

 

 

 

Let’s call the critical p-value at the interim analysis 𝑝1
𝑐𝑟𝑖𝑡, the critical p-value at the final 

analysis 𝑝2
𝑐𝑟𝑖𝑡, and the total false positive rate of the experiment ɑtotal. To keep ɑtotal at the desired 

5% level, the following equality must be true: 

 

𝑃(𝑝1 < 𝑝1
𝑐𝑟𝑖𝑡) +  𝑃 ((𝑝1 ≥ 𝑝1

𝑐𝑟𝑖𝑡) ∩ (𝑝2 < 𝑝2
𝑐𝑟𝑖𝑡)) =  .05          (1) 



 

 

 

If 𝑝1
𝑐𝑟𝑖𝑡 and/or 𝑝2

𝑐𝑟𝑖𝑡 are set at .05, it is clear that this equality will not hold. Instead, to 

maintain the overall false-positive rate at .05, the researcher needs to apply a correction such that 

𝑝1
𝑐𝑟𝑖𝑡 and 𝑝2

𝑐𝑟𝑖𝑡 are both smaller than .052.  

Which correction exactly? Since the researcher is testing the same hypothesis twice (once 

at the first “peek”, and once at the end of the data collection), it might be tempting to apply a 

Bonferroni correction for multiple comparisons, which would set both 𝑝1
𝑐𝑟𝑖𝑡 and 𝑝2

𝑐𝑟𝑖𝑡 to .025 

(i.e., .05 divided by two; Keppel and Wickens 2004). However, since the two statistical tests are 

not independent (the final test is based in part on the data collected for the interim analysis), 

these critical values would be too conservative: The overall false-positive rate after applying the 

Bonferroni correction will be less than .05. Instead, statisticians have developed specific 

corrections that account for the correlated nature of the tests, and that researchers can apply to 

maintain false-positive rates at the desired alpha level. In the example earlier, setting both set 

both 𝑝1
𝑐𝑟𝑖𝑡 and 𝑝2

𝑐𝑟𝑖𝑡 to .0294 (the Pocock correction; 1977) would lead to an overall false positive 

rate of 5%. 

 

Different Corrections for Different Goals: Maximizing Power vs. Stopping Data Collection 

Earlier 

 

 
2 Researchers occasionally report that they have, after observing a non-significant result in a Fixed N 

design, collected additional data and ran a second hypothesis test (e.g., Reinholtz, Fernbach and de Langhe 2021). 

While this transparency is laudable, Equality 1 shows that this approach will nonetheless result in inflated Type I 

error rates: Since the first statistical test was already performed against p = .05, any additional test will push the total 

false-positive rate of the experiment north of 5%. 



 

 

In Equality 1, 𝑝1
𝑐𝑟𝑖𝑡 and 𝑝2

𝑐𝑟𝑖𝑡 share a hydraulic relationship: The lower one critical value 

is, the higher the other can be. This relationship means that researchers can adjust the relative 

rejection thresholds at the interim versus final analysis, depending on their goal for the study. To 

put it differently, researchers have a fixed “testing budget” (defined by their desired false-

positive rate alpha), and they must decide how they will “spend” it on the different tests they will 

perform. 

If researchers set a relatively high value for 𝑝1
𝑐𝑟𝑖𝑡, they are giving themselves a better 

chance of rejecting the null at the interim stage, and therefore maximizing the cost-saving 

potential of the sequential analysis. However, the fact that they are “spending” a significant part 

of their alpha at the interim stage forces them to set a more conservative critical value at the final 

stage, which gives them less power to detect an effect. At the extreme, setting 𝑝1
𝑐𝑟𝑖𝑡 = .05 and 

𝑝2
𝑐𝑟𝑖𝑡 = 0 is equivalent to only collecting half the planned sample3: It always saves researchers 

money by collecting fewer observations, but gives them much less power. 

The reverse is also true: If researchers set a more conservative value for 𝑝1
𝑐𝑟𝑖𝑡, they are 

less likely to reject the null at the interim analysis, and therefore less likely to save resources. 

However, this allows them to choose a higher value for 𝑝2
𝑐𝑟𝑖𝑡, and therefore to achieve a higher 

level of power at the final stage of their analysis. At the extreme, setting 𝑝1
𝑐𝑟𝑖𝑡 = 0 and 𝑝2

𝑐𝑟𝑖𝑡 = .05 

is equivalent to always collecting the full sample: Researchers never save money by rejecting the 

null early, but they maintain the full amount of power to detect their effect. 

A number of different statistical corrections have been proposed by statisticians, each 

designed to achieve a balance between these two goals (e.g., Haybittle 1971; O’Brien and 

 
3 With 𝑝2

𝑐𝑟𝑖𝑡  = 0, the researcher knows that they will never be able to reject the null at the final stage, so 

there is no point in collecting the second half of the data. 



 

 

Fleming 1979; Peto et al. 1977; 1977; Wang and Tsiatis 1987; Whitehead 1997).  We discuss 

two of these corrections, and when to use them, when we discuss our proposal to facilitate the 

adoption of group sequential designs. 

 

Peeking More than Once 

 

In the prior examples, we described a group sequential design with only one peek 

performed halfway through the data collection process. However, researchers are not limited in 

how early or often they peek at their data. Someone could for instance design an experiment in 

which they peek a first time after collecting 25% of their data, a second time after collecting 75% 

of their data, and perform the final analysis after collecting 100% of the sample. As in the 

simpler examples described above, it is essential that researchers apply the appropriate critical 

values to the K different analysis, such that the following equation is true under the null: 

 

𝑃(𝑝1 < 𝑝1
𝑐𝑟𝑖𝑡) + ∑ 𝑃 ((𝑝𝑘 ≥ 𝑝𝑘

𝑐𝑟𝑖𝑡) ∩ (𝑝𝑘+1 < 𝑝𝑘+1
𝑐𝑟𝑖𝑡))

𝐾−1

𝑘=1

 = .05         (2) 

 

While designs with multiple and unevenly spaced peeks are more complex, the intuitions 

behind them remain relatively straightforward and can be summarized in a few basic principles. 

First, the more peeks performed, the more likely researchers are to realize cost-savings 

(as they have more opportunities to stop early), but the less powerful the design is in aggregate 

(as a larger part of the “testing budget” is spent on smaller samples).  

Second, for unevenly spaced peeks, earlier peeks (e.g., at 25% of data collection and then 

not again until 100%) sacrifice more overall power than later peeks (e.g., not until 75% of data 



 

 

collection and again at 100%) but lead to larger cost savings opportunities. The intuition for this 

pattern has to do with the non-independence of the tests. An earlier test offers greater opportunity 

for cost savings (earlier termination) but will be less correlated with the final test than a later test 

and therefore requires a more conservative correction to maintain the same overall false-positive 

rate. 

 

Stopping For Futility 

 

We have so far covered one benefit of interim statistical tests: the opportunity to end data 

collection early if the test reveals sufficient evidence against the null. Group sequential designs, 

however, also allow researchers to bring an early end to studies that show underwhelming 

evidence for the researcher’s hypothesis, and that therefore have little chance of ultimately 

reaching statistical significance.  

When researchers run studies, they always face the possibility that their studies will 

“fail”. It is first possible that the null hypothesis is correct, and that the study will produce, in 

expectation, no effect. It is also possible that the effect is smaller than anticipated, so small in 

fact that their design has very little chance of detecting it. In both cases, the researcher may want 

to stop data collection early. Terminating a study that is unlikely to deliver statistically 

significant results if continued is called “stopping for futility”. The logic of this analysis is to 

choose a “futility threshold” below which the researcher will stop data collection at the interim 

stage.  

Futility thresholds (unlike rejection thresholds) are most often expressed as test statistics 

(e.g., z-scores, or t-values). This is because p-values can be ambiguous with regard to the 



 

 

direction of an effect: In a two-sided t-test for instance, the same p-value can reflect a mean 

difference in the predicted direction or in the opposite direction of the hypothesis. T-statistics, on 

the other hand, are never ambiguous: a positive (negative) t-value always indicates a difference 

in the predicted (opposite) direction. For instance, if a researcher sets t = 0 as a futility threshold, 

it means that they will terminate data collection early (and not collect the maximum N) if an 

interim t-test reveals an effect in the opposite direction as the hypothesis.  

Figure 2 illustrates the impact of different futility thresholds on the decisions a researcher 

will make at the interim analysis. Without futility thresholds (top panel), researchers will go on 

to collect the rest of their sample whenever the interim analysis doesn’t reveal a significant 

result. With a low futility threshold (middle panel), only the studies with the most unfavorable 

results will be interrupted at the interim analysis. It all but guarantees that no study which would 

have ultimately “succeeded” will be terminated early (and therefore will not have a negative 

impact on statistical power), but it will save the researcher less money (as some of the studies 

that would ultimately “fail” at the final stage are nonetheless continued). On the contrary, a high 

futility threshold (bottom panel) means interrupting any study that shows mildly disappointing 

results at the interim analysis. This will lead to significant cost-savings (as only the most 

promising studies will be continued), but also to a significant loss of statistical power (as many 

of these terminated studies, while underwhelming at the interim analysis, would have 

nonetheless yielded significant results if continued). Finally, the graphs show that futility 

thresholds cannot increase the false-positive rate of the experiment: The rejection region is 

identical, regardless of the choice of the futility threshold. 

 

FIGURE 2 



 

 

IMPACT OF FUTILITY THRESHOLDS ON THE DECISION MADE AT THE INTERIM 

ANALYSIS 

 

 

 

PRE-REGISTERED INTERIM ANALYSIS DESIGNS 

 

The adoption of a tool depends heavily on its ease of use, perceived appropriateness, and 

perceived usefulness. This is our motivation for introducing Pre-Registered Interim Analysis 

Designs (PRIADs): A procedure designed to facilitate the adoption of group sequential designs 

in consumer research. This proposal relies on three pillars. 

First, PRIADs make group sequential designs easy and accessible to researchers. Our 

proposal shows that group sequential design can be adopted with minimal changes to the 



 

 

researchers’ usual workflow; and allows marketing researchers to design group sequential 

designs tailored to their preferences and constraints by answering five simple questions. For each 

question, we offer guidelines and rule of thumbs, such that researchers can choose the PRIAD 

that best fits their goals and constraints. For researchers looking for default choices, we also offer 

a few “off-the-shelf” PRIADs in Appendix A.  

Second, PRIADs aim at legitimizing group sequential designs in a marketing context. 

Readers, reviewers, and editors of marketing journals might fear that the flexibility of group 

sequential designs would translate into researchers’ degrees of freedom, and object to their use. 

We argue that linking group sequential designs to pre-registrations will allow researchers to 

leverage their benefits without increasing false-positive rates. 

Third and finally, we provide user-friendly tools to design and report PRIADs. We 

introduce an interactive web app (PRIApp) that allows researchers to design PRIADs, simulate 

their expected outcomes under various assumptions, and effortlessly generate pre-registrations. 

We also include rejection thresholds for common PRIADs as well as sample texts to facilitate 

pre-registration and reporting in Appendices B, C and D of the paper. 

 

A Tutorial on PRIADs: Five Decisions, with Sensible Defaults and Rules of Thumb 

 

We contend that a key factor that has hindered the adoption of group sequential designs is 

their apparent complexity. Researchers must make many decisions, but often lack intuition 

regarding the impact of these decisions, and do not have “default” options they can lean on. In 

this section, we break down the design of a group sequential analysis in five easy steps, offer an 

intuitive understanding for the impact of each of these decisions, and provide sensible guidelines 



 

 

that researchers can use (see table 1 for a summary). For researchers who do not wish to engage 

in these considerations, we offer a few “off-the-shelf” PRIADs in the Appendix A.  

Before offering these guidelines, we want to stress that all possible decisions are equally 

valid from a statistical standpoint: As long as these choices are made prior to starting data 

collection, any PRIAD will maintain the false-positive rate of the experiment at the same 

expected level as a Fixed N design. As such, researchers should not be overly concerned about 

choosing the “correct” PRIAD; only about making informed choices that best reflect their 

knowledge about the hypothesis and their relative preferences regarding cost-saving potential 

and statistical power. For the same reason, reviewers of the research need not be overly 

concerned about the rationale behind different design choices in a PRIAD, so long as the choices 

reported in the paper match those of the pre-registration. 

 

Decision 0: What Hypothesis Test? Since PRIADs work by adjusting the rejection 

threshold of statistical tests, they can be applied to any null-hypothesis statistical procedure that 

outputs a p-value: Regression analysis, t-tests, ANOVAs, main effects, moderation tests, or 

choice models are all valid uses for PRIADs. 

For mediation tests (which do not generate a p-value, but instead determine statistical 

significance by generating a bootstrapped confidence interval), researchers need to adjust the 

width of the confidence interval. In PROCESS (Hayes 2017), this is accomplished by changing 

the CONFINT option from its default value of 95 (e.g., setting CONFINT = 97.06 will be 

equivalent to having a rejection threshold of p = .0294; i.e., (1 - .0294) * 100 = 97.06). 

 



 

 

Decision 1: How Many Observations? In a traditional Fixed N experiment, the researcher 

commits to collecting a fixed number of observations. When designing a PRIAD, the researcher 

makes a different determination: They choose the maximum number of observations (“MaxN”) 

that their experiment will collect should it proceed to the final stage. 

MaxN can be determined in multiple ways. In the absence of any information about the 

expected magnitude of the effect, it can be informed by cost (e.g., “I cannot afford to spend more 

than $800 on this study) or logistical (e.g., “There are only 200 MBA students enrolled in the 

program”) constraints (Lakens 2022). MaxN can also be determined using the Smallest Effect 

Size of Interest (SESOI; Anvari and Lakens 2021) approach: The researcher determines the 

smallest effect they are interested in studying, and set MaxN such that they have X% chance of 

detecting it (typically 80% or 50%). For instance, a researcher might say that they are only 

interested in effects larger than d = .1. If they want to detect an effect this small at least 50% of 

the time, they will need to set Max N to 700 observations. A third possibility, finally, is to set 

MaxN using the lower bound of an estimated effect. If a researcher observed d = .5 with a 95% 

CI = [.3; .7] in a first study, they might set MaxN to 700 in a follow-up study, which will give 

them 80% chance of detecting an effect as small as d = .3. 

 

Decision 2: How Many Stages? After deciding on the maximum number of observations 

that they are willing to collect, researchers must decide on how many times to peek at the data. 

More frequent peeks give researchers more control over the course of the data collection (i.e., 

more opportunities to detect a significant effect, or to terminate for futility), at the expense of 

statistical power and added logistical difficulties (need to interrupt and restart data collection a 



 

 

larger number of times). For simplicity, we limit our consideration to designs with three or fewer 

peaks (i.e., four or fewer stages). 

Two factors influence how many peeks the researcher should perform. First, the 

uncertainty regarding the size of the effect. The more uncertainty researchers have about the 

potential magnitude of an effect, the more peeks they should perform. Indeed, if the predicted 

effect might range from very large to very small, researchers would probably want to peek often 

at the data, to maximize the odds that they do not collect more observations than needed. Second, 

the value chosen for MaxN. If researchers have decided on a large value for MaxN, it means that 

early peeks at the data (e.g., at 25% of the data) will still have a decently large sample size, and 

therefore some chance of detecting an effect. On the other hand, if researchers are more 

financially constrained and set a small value for MaxN, early peeks will have so little power to 

detect most effects that they are probably not worth doing.  

 

Decision 3: When to Peek? Conditional on a number of peeks, researchers must decide 

how to spread them over the course of the data collection. As a default, we recommend spreading 

them uniformly: This approach evenly distributes the amount of information gained about the 

effect across peeks. There is one circumstance in which researchers might want to deviate from 

this default: When running pilot studies. We refer the reader to the “Benefits of PRIADs” section 

below for an illustration. 

 

Decision 4: Which Correction? As discussed earlier, different corrections can be 

designed to achieve different goals: Optimizing for cost-savings, versus optimizing for statistical 

power. For parsimony, PRIADs only consider two types of corrections. 



 

 

The Pocock correction (Pocock 1977), first, gives researchers a high chance of detecting 

an early effect, at the cost of a greater loss of statistical power at the final stage. It achieves this 

goal by using a relatively high rejection threshold for interim analyses, at the cost of a lower 

rejection threshold at the final stage (e.g., 𝑝1
𝑐𝑟𝑖𝑡 = 𝑝2

𝑐𝑟𝑖𝑡 =  .0294 for a two-stage design with 

equally-spaced peeks). Given the resulting drop in power at the final stage, we recommend using 

the Pocock correction whenever running studies with a large MaxN, or when studying effects 

that are relatively easier to detect (e.g., main effects or reversal interactions, as opposed to 

attenuated interactions). 

The O’Brien-Fleming correction (O’Brien and Fleming 1979), in contrast, gives 

researchers a smaller chance of detecting an early effect but maintains a higher level of statistical 

power at the final stage. It achieves this goal by setting very strict rejection thresholds for early 

stages, and progressively more liberal rejection thresholds for later stages (e.g., 𝑝1
𝑐𝑟𝑖𝑡 =

.0052, 𝑝2
𝑐𝑟𝑖𝑡 =  .048 for a two-stage design with equally-spaced peeks). We recommend using 

this correction whenever running a study designed to capture a subtle effect (e.g., an attenuated 

interaction), or when running a study that will be difficult to repeat (e.g., a field study) and for 

which it is therefore important to conserve as much statistical power as possible for the final 

analysis. Appendix B of the paper reports the exact O’Brien-Fleming and Pocock corrections for 

equally-spaced peeks, for up to four stages. 

 

Decision 5: Futility or Not? The final decision researchers will have to make is whether to 

perform a futility analysis, and if so at which peeks and with which thresholds. As mentioned 

earlier, futility analyses allow researchers additional savings opportunities (by bringing an early 

end to studies that are unlikely to deliver in a significant effect), at the cost of an increase in false 



 

 

negatives (since some interrupted studies will have nonetheless turned out to be significant). The 

higher the futility threshold, the more power researchers are sacrificing, but the greater the cost-

savings potential. The timing of futility analysis also matters. Futility analysis performed at early 

(vs. late) peeks will save the researchers more money (they will bring a very early end to 

unpromising studies) but will be more costly in terms of statistical power (since the decision is 

based on a small amount of data, the odds that the study will ultimately turn out to be significant 

are greater) 

Unlike the other aspects of PRIADs, futility analysis decisions do not have be determined 

in advance and pre-registered. Since they cannot lead to an increase in false-positive rates, 

researchers can decide, at each peek, if they want to continue data collection or not.  

 

TABLE 1 

SUMMARY OF THE DECISIONS INVOLVED IN A PRIAD 

 

 What is this? How to make this decision? 

Decision 1: 

MaxN? 

The number of 

observations that the 

design will collect, in 

the "worst case" 

scenario 

MaxN can reflect (i) the number of observations 

required to detect a smallest effect size of interest, (ii) 

the cost constraints of the researcher, or (iii) an informed 

prior on the smallest effect size that the experiment 

might return. 

Decision 2: 

How many 

stages? 

The number of interim 

analyses that will be 

conducted, plus one 

(for the final analysis) 

We recommend two, three or four stages. More stages 

afford greater opportunities for cost-savings but lower 

the power of the overall design. 

Decision 3: 

When to 

peek? 

The timing of these 

tests. 

We recommend spreading the tests uniformly, except 

when conducting a pilot study. In this case, we 

recommend a single early peek (e.g., after collecting 

25% of the data). 



 

 

Decision 4: 

Which 

correction? 

The significance 

thresholds against 

which the tests will be 

performed. 

We recommend using the Pocock correction whenever 

researchers expect a decent level of power (e.g., for 

studies with large MaxN, and when studying main 

effects or reversal interactions). Otherwise, the O'Brien-

Fleming correction is more appropriate. 

Decision 5: 

Futility 

analysis? 

Whether studies with 

underwhelming results 

will be abandoned. 

Designs without futility analysis provide more 

informative results when the null is true, but will be 

more costly to the researcher. Setting a futility threshold 

allows researchers to abandon unpromising studies, at 

the cost of lower statistical power and less informative 

null results.  

 

NOTE. — All choices are equally valid from the perspective of maintaining the false-

positive at a nominal level: They only affect the trade-off between statistical power and cost-

saving potential. 

  

Legitimizing Interim Analysis 

 

Readers and reviewers might fear that the flexibility of group sequential designs will 

facilitate false positives. Indeed, for group sequential designs to effectively control Type I errors 

at a desired level, all the aspects of the design must be decided ex ante: The researcher must 

specify, before any data is collected, the maximum number of subjects, the number of peeks, the 

timing of these peeks, the type of correction that their group sequential design will use, and the 

exact procedure that they will use to analyze their data. Any form of “post hoc analysis decision” 

(i.e., decision made after seeing the data; Meyvis and Van Osselaer 2018) has the potential to 

increase Type I errors and lead to an uncontrolled false-positive rate (Simmons et al. 2011). 

For this reason, our proposal emphasizes the importance of a well-crafted pre-registration 

(Simmons, Nelson and Simonsohn 2021) specifying (i) the number of experimental conditions, 

(ii) any data exclusion that will performed on the data prior to analysis, (iii) the exact statistical 



 

 

test that will be performed (including description of the independent variable, dependent 

variable, and control variables), (iv) the maximum number of observations collected, (v) the 

number and timing of peeks and (vi) the type of correction (and resulting critical values) that will 

be applied to the peeks. This pre-registration process will help researchers identify all decisions 

that must be made before collecting data, specify these decisions explicitly, and generate a 

document that can be shared with readers to help assuage any concerns about researchers’ 

degrees of freedom. To ensure that this extra step requires minimal effort on the researchers’ 

part, Appendix C of the paper contains a pre-registration text researchers can use as a template 

(highlighting all decisions that must be made). In addition, the companion app of the paper (see 

section below) can automatically generate this pre-registration text after creating a PRIAD. 

 

Using the PRIApp to Effortlessly Design and Generate Pre-Registered Interim Analysis Designs 

 

A final factor that might explain the dearth of group sequential designs in marketing is 

the lack of accessible tools to design and pre-register them. While comprehensive statistical 

libraries are available in R (rpact; Wassmer and Pahlke 2023) and in SAS (the SEQDESIGN 

procedure), only a subset of marketing researchers use R and SAS, and an even smaller subset 

would have the time to explore and master these complex libraries. To bridge this gap, we 

designed and programmed an interactive web application called PRIApp. This app allows 

researchers to design PRIADs, simulate their impact under various assumptions, and generate the 

corresponding pre-registration text. PRIApp is accessible at the following URL: 

https://priadconsumerresearch.shinyapps.io/PRIApp/, and the documentation of the app is 

available on the OSF repository of the paper (https://osf.io/74596/). 

https://priadconsumerresearch.shinyapps.io/PRIApp/
https://osf.io/74596/


 

 

 

Reporting the Results of a PRIAD 

 

After pre-registering their chosen PRIAD and collecting the data, researchers must finally 

report the results of their experiment. For the most part, the results of a PRIAD will be reported 

in the same way as the results of a Fixed N design, with three differences. 

First, we recommend that researchers remind readers of the exact type of PRIAD they are 

using (e.g., “an O’Brien-Fleming PRIAD with four equally-spaced stages”) and of the 

corresponding critical values (e.g., “at each of these stages, we will reject the null only if p is 

respectively smaller than [.0001; .0042: .0191: .0420]”). While this information is accessible in 

the pre-registration, we believe this reminder will facilitate the interpretation of the results and 

minimize the likelihood of errors. 

Second, we recommend that researchers specify whether the reported result was obtained 

from any of the interim peek(s) (e.g., “Our interim analysis performed after collecting X% of the 

data (N = XXX) revealed a significant effect”) or from the final analysis (e.g., “Our analysis 

performed on the full sample (N=XXX) revealed a significant effect”). This clear reporting will 

ensure that reviewers can assess the authors’ adherence to their pre-registration, and that other 

researchers can reproduce the authors’ analysis. 

Third and finally, p-values obtained from sequential analyses have a slightly different 

interpretation: They might no longer represent the exact probability of obtaining a result at least 

as extreme as the one observed in the data when the null is true4. For the same reason, confidence 

intervals (which are mathematically connected to the p-value) might not have the expected 

 
4  We refer the reader to the general discussion for a more comprehensive treatment of this issue. 



 

 

coverage. While this distortion will not affect the severity of the hypothesis test (i.e., the false-

positive rate of the overall design is controlled at the desired nominal level), it can affect the 

conclusions of meta-analytical tools that rely on p-values as inputs (i.e., p-curve or z-curve)5. For 

this reason, we recommend that authors respectively flag p-values as sequential p-values (e.g. 

“𝑝sequential =  . 𝑋𝑋𝑋” or “sequential 𝑝 = . 𝑋𝑋𝑋") and confidence intervals as sequential 

confidence intervals (e.g., “Sequential 95% CI = [LBCI, UBCI]”); and that readers do not use 

sequential p-values when performing p-curve or z-curve analysis. 

For researchers looking for practical examples, we provide in Appendix D a few sample 

write-ups describing the results of PRIADs. 

 

Evaluating the Results of a PRIAD 

 

Researchers often have to evaluate experimental evidence (e.g., as a reviewer for a 

journal). Beyond the standard checks that reviewers typically perform on studies (e.g., assessing 

the internal validity of the design), a few other verifications are important when evaluating the 

results of a PRIAD.  

First, reviewers should ensure that the design and analysis reported in the paper match the 

pre-registration. Second, reviewers should double-check that the researcher is testing against the 

correct significance thresholds: For instance, a researcher using a two-stage Pocock design must 

only claim a significant result if the p-value (at the interim or final stage) is lower than .0294. 

Finally, reviewers should ensure that p-values from PRIADs are appropriately reported as 

“sequential p-values.”  

 
5 Meta-analysis of effect sizes, on the other hand, will not be affected. We again refer the reader to the 

general discussion for a more comprehensive treatment of this issue. 



 

 

On the other hand, the choices a researcher makes when designing a PRIAD (e.g., the 

number of peeks, or the type of correction) do not require excessive scrutiny: All PRIADs will 

maintain false-positive rates at a nominal level, as long as they are pre-registered and followed 

through by researchers.  

 

THE BENEFITS OF PRIADs 

 

A final reason for the limited uptake of group sequential designs might be that consumer 

researchers lack practical examples of the circumstances in which they can be used, or a good 

sense of their usefulness. In this section, we showcase multiple benefits of PRIADs, and explain 

how they can help researchers preserve valuable resources when running experiments. Note that 

while we focus for simplicity on two-cell “main effect” designs, we remind the reader that 

PRIADs can be applied to any confirmatory hypothesis test that generates a p-value (i.e., 

moderation, regression, choice models, etc.). 

 

PRIADs Allow Researchers to Manage Effect Size Uncertainty 

 

As mentioned in the introduction, researchers rarely possess precise information about 

the effect size that their experiment will produce: At best, they have some confidence interval of 

how large or small the effect might be. This uncertainty is a key issue in Fixed N experiments, 

which require researchers to commit to a specific sample size. 

Consider the following example: a researcher has run a study supporting their key 

hypothesis (N = 385, p < .001, d = .4), and is now planning to replicate the effect with different 



 

 

stimuli. While they have no reason to believe that the effect will be systematically larger or 

smaller than in the first version of the study, they still face considerable uncertainty regarding the 

true magnitude of the effect: The 95% confidence interval for the effect size from the first study 

ranges from d = .2 to d = .6. In a Fixed N framework, the researcher must choose in advance 

whether to collect 90 observations (which would give them 80% power to detect d = .6 but only 

15% power to detect d = .2), 790 observations (which would give them 80% power to detect d = 

.2, and over 99% power to detect d = .6), or anything in between. This inflexible design is a 

problem for the researcher: If they select a small sample size, they will often fail to detect 

smaller-than-expected effects. If they select a large sample size, they will collect many more 

observations than are required to detect larger-than-expected effects. 

A PRIAD, on the other hand, will give the researcher welcome flexibility in this context: 

The researcher can simply set the MaxN corresponding to 80% power to detect the lower bound 

of their confidence interval (i.e., 790 observations), knowing that they will not collect the full 

sample if the effect turns out to be on the larger side of their expectations. This strategy will lead 

them to achieve a high level of statistical power overall, while collecting fewer participants (in 

expectation) than a Fixed N design. 

To illustrate this benefit, let us assume a researcher studying a main effect, whose 

unknown effect size is drawn from a normal distribution N(.4, 0.102) (such that the 95% CI 

corresponds to the [.2, .6] observed by the researcher). Figure 3 displays the average number of 

observations required (x-axis) to achieve a given level of statistical power (y-axis) given this 

distribution of effect sizes. The gray line corresponds to the power achieved by Fixed N designs 

for a given sample size. We see that small sample sizes have very little power overall (N = 90 

only has a 47% chance of detecting an effect), and that power is logarithmically increasing with 



 

 

the sample size (N = 400 has 92% chance of detecting an effect, N = 790 has 98% chance of 

detecting an effect)6. 

 

FIGURE 3 

COMPARISON OF THE EFFICIENCY ACHIEVED BY PRIADs AND BY FIXED N 

DESIGNS 

 

NOTE. — This graph shows the efficiency (power achieved for an expected N collected) 

of PRIADs and Fixed N designs when studying an effect 𝑑 ∼ 𝒩(. 4, 0.102).  

 

 
6 The data and code required to reproduce all the analysis and simulations of the paper are available on the 

OSF repository of the paper: https://osf.io/74596/. 

https://osf.io/74596/


 

 

We can use this gray line as a benchmark to compare the efficiency of various types of 

PRIADs to Fixed N designs: Any (N, Power) combination that falls below this line achieves a 

smaller amount of power for a given N, and any combination above this line achieves a greater 

amount of power for a given N.  

The green diamond shows a PRIAD with MaxN = 790, four equally spaced stages (at 

25%, 50%, 75%, and 100% of the data), and a Pocock correction. On average, a researcher using 

this design will collect 302 observations, and achieve 97% power. In contrast, a Fixed N strategy 

committed to collecting 302 observations will only achieve a little under 87% power. 

The parameters chosen for this PRIAD (four peeks and a Pocock correction) are 

consistent with our guidelines given that the researcher is (i) studying a main effect with (ii) a 

large amount of uncertainty regarding the true effect size and 3) has chosen a large value for 

MaxN. However, the graph shows that even “less optimal” PRIADs will realize significant gains 

in power for the same expected sample size. Consider the orange triangle, blue circle, and red 

square on the graph, respectively corresponding to PRIADs with (i) an O’Brien-Fleming 

correction with four stages, (ii) a Pocock correction with two stages, and (ii) an O’Brien-Fleming 

correction with two stages. All three PRIADs, keeping the expected number of observations 

constant, achieve a higher level of statistical power than a Fixed N design. 

 

PRIADs Increase the Efficiency of Data Collection 

 

The previous result showed that PRIADs can be more efficient than Fixed N designs 

when there is uncertainty about effect size: In expectation, they will collect a smaller number of 

observations to achieve a given level of statistical power. Perhaps surprisingly, PRIADs can also 



 

 

be more efficient for known effect sizes: Even in the absence of any uncertainty about the 

magnitude of the effect an experiment will yield, using a PRIAD can reduce the average number 

of observations needed to achieve a given level of power (vs. Fixed N designs). 

The intuition for this result is that PRIADs allow researchers to “spend” some of their 

statistical power (by using a stricter rejection threshold at the final stage) to “buy” a chance at 

collecting fewer observations (by conducting interim hypothesis tests). Is this trade-off worth it? 

The answer depends on the overall level of statistical power of the PRIAD, which will influence 

both the “cost” and the “benefits” of this “transaction.”  

If a PRIAD has high statistical power overall, the “cost” of using a stricter rejection 

threshold on power will be minimal. For instance, a test that has 90% power to detect an effect 

with 𝑝𝑐𝑟𝑖𝑡 = .05 will still have 85% power to detect an effect with 𝑝𝑐𝑟𝑖𝑡 = .0294, a mere 5.5% 

drop in power. In addition, the “benefits” will be high: If a PRIAD has high power overall, it will 

have a decent chance of rejecting the null at the interim analysis, and therefore a decent chance 

of collecting fewer observations. Altogether, the researcher would pay a minimal cost in power 

to achieve a decent expected decrease in participant costs. 

If, on the other hand, a PRIAD has low statistical power overall, the “cost” of a stricter 

rejection threshold at the final stage will be high. For instance, a test that has 20% power to 

detect an effect with 𝑝𝑐𝑟𝑖𝑡 = .05 will only have 14% power with 𝑝𝑐𝑟𝑖𝑡 = .0294, a 30% decrease in 

power. And if the PRIAD has little power overall, it means that the interim analyses will only 

have a slim chance of detecting the effect. All in all, the researcher would pay a relatively large 

cost in power to achieve a minimal expected decrease in participant costs. 

Figure 4 formalizes this intuition and shows, for different levels of power (x-axis), how 

many more observations a Fixed N requires to achieve the same level of power as a PRIAD (y-



 

 

axis). Values smaller than 1 means that a Fixed N design requires fewer observations to achieve 

a given level of power (i.e., Fixed N is more efficient), and values greater than 1 means that a 

Fixed N design requires more observations (i.e., PRIAD is more efficient).  

 

FIGURE 4 

RELATIVE EFFICIENCY OF DIFFERENT KINDS OF PRIADs 

 

NOTE. — Efficiency (on the y-axis) is defined as the ratio of observations collected by a 

Fixed N design (vs. a PRIAD) to achieve a given level of statistical power (on the x-axis). 

 

This graph shows that PRIADs using the conservative O’Brien-Fleming correction are, 

even at very low levels of power, more efficient than Fixed N designs: As long as the researcher 

has more than ~25% power to detect an effect, these PRIADs will collect fewer observations 



 

 

than a Fixed N to achieve of desired level of power. The efficiency of these PRIADs then slowly 

ramps up with the level of power achieved by the researcher: At 80% power, a 2-stage (4-stage) 

O’Brien-Fleming PRIAD will save the researcher 12% (20%) of their participant costs. PRIAD 

using the liberal Pocock correction require more power to break-even with Fixed N designs 

(between 50 and 55%, depending on the number of stages), but then go on to achieve more 

substantial savings: At 80% power, a 2-stage (4-stage) Pocock PRIAD would save the researcher 

17% (24%) in participant costs.  

Are these power levels typically achieved by consumer researchers? If so, how much 

money would they have saved by using PRIADs? To answer these questions, we conducted a re-

analysis of consumer research experiments. We successfully reproduced the key result of 212 

studies published in the Journal of Consumer Research, and simulated the savings the researchers 

would have obtained by using a PRIAD instead of a Fixed N design. Our analysis, described in 

full in the “Validating the Cost-Saving Potential of PRIADs” section, suggests a meaningful 

saving potential: Researchers would have saved between 20% and 29% of their participant costs. 

 

PRIADs Allow Researchers to Conduct More Efficient Pilot Studies 

 

The ability to collect fewer observations while achieving comparable levels of power is 

an obvious source of cost-savings for researchers, and PRIADs can also deliver savings in other 

ways. Marketing researchers often run pilot studies to calibrate their stimuli or assess the 

plausibility of a hypothesis. A typical strategy is to run a small sample study (the “pilot”), 

analyze the data, and run a full-sample version of this study if the results of the pilot are 

promising enough. However, this approach is wasteful: The data of a “successful” pilot study is 



 

 

discarded, and only the data from the full-sample study is used in testing the hypothesis. A well-

crafted PRIAD, however, can avoid wasting the data of pilots that are followed-up by a full-scale 

study. 

Let’s consider the sample size first: Researchers should choose the MaxN that 

corresponds to the number of participants that they are planning to run for the full study. Then, 

the number and timing of the peeks: The researcher will want to perform one early peek at the 

data, corresponding to the planned sample size of the pilot study (e.g., after collecting 25% of the 

observations). The first 25% of the sample will effectively serve as the pilot study, and the last 

75% (if collected) would be added to serve as the main study.  

Finally, the futility analysis and type of correction. The goal of this early peek is to 

diagnose potential issues with the design, and to discriminate between unpromising and 

promising studies: This suggests that researchers would benefit from performing a futility 

analysis. Since the researchers’ goal is not to have a high chance of rejecting the null at this early 

peek, they should choose the O’Brien-Fleming correction as to maintain as much power as 

possible at the final stage. 

To illustrate the cost-savings potential of this strategy, consider the following scenario. 

For simplicity, we will assume a cost per participant of $1. A researcher is running pilot studies 

with N = 100. Anytime a pilot study reveals a signal in the right direction (i.e., a t-statistics 

greater than 0), they run the full study with N = 400. This Fixed N design gives the researcher 

80% power to detect d = .198, and costs them $100 per “failed” pilot, $500 per “successful” 

pilot. Now, imagine that the researcher is using a PRIAD instead. To obtain an equivalent 

design, the researcher will need to set MaxN = 400, and one peek at 25% of the data with a 

futility threshold of t = 0 (i.e., means of the two groups are equal). Since the researcher is less 



 

 

concerned about detecting an effect at the interim analysis, they choose the O’Brien and Fleming 

correction. 

The futility threshold guarantees that the researcher will abandon a “failed” pilot study as 

often as they would do with a Fixed N design, for the same total cost of $100. If the pilot 

“succeeds” on the other hand, the researcher would only need to collect 300 additional 

observations, for a total cost of $400 (vs. $500 in the Fixed N design). And since the researcher 

chose a conservative correction, the statistical power of the final analysis is basically unchanged: 

They would for instance have more than 79.99% power (vs. 80% power in the Fixed N design) 

to detect d = .198.  

 

VALIDATING THE COST-SAVING POTENTIAL OF PRIADS 

 

Next, we provide an empirical validation of the cost-saving potential of PRIADs using 

data from consumer behavior experiments. To do so, we reproduce the results of Fixed N studies 

published in the Journal of Consumer Research and simulate the counterfactual results the 

researchers would have obtained if they had run a PRIAD instead. 

 

Method 

 

Our re-analysis started by identifying a suitable set of studies to reproduce. To this end, 

we attempted to identify all pre-registered studies published in the Journal of Consumer 

Research with publicly available data. We used the software Publish or Perish (Harzing 2007) to 

conduct Google Scholar searches on April 3rd 2024. Our queries searched all the articles 



 

 

published in the Journal of Consumer Research which contain (i) at least one of the keywords 

“osf”, “Open Science Framework” or “researchbox” (to identify posted datasets), and (ii) at least 

one of the keywords “pre-registration”, “preregistration”, “pre-registered”, “preregistered”, or 

“aspredicted” (to identify pre-registrations). 

 

Sample of Studies. This search returned 107 papers published between 2017 and 2024 

(the full list, and detailed information about the papers, is available on the OSF repository of the 

paper). Out of this set, 51 papers contained at least one pre-registered confirmatory experiment 

for which both the data and pre-registration were accessible. These papers contain an average of 

4.39 such studies (min = 1, max = 10), for a total of 224 studies.  

 

Reproducing the Results. For each of the 224 studies in our sample, we identified the key 

hypothesis test (defined as the first hypothesis test mentioned in the pre-registration). This key 

hypothesis was a main effect in 167 of the studies, a two-way attenuation interaction in 46 of 

them, a two-way reversal interaction in 7 of them, a three-way interaction in three of them, and a 

null result in one of them (which was therefore excluded from consideration)7. 

We then wrote R code attempting to reproduce the statistical results associated with these 

key hypotheses. There were occasional discrepancies between the pre-registered statistical 

procedure and the statistical procedure reported in the paper: In these cases, we focused on 

reproducing the result described in the paper. 

 
7 A second paper in our sample also pre-registered a null hypothesis as key hypothesis. However, 

this paper also specified a second, non-null, hypothesis test in the pre-registration: We thus attempted to 

reproduce this result rather than dropping it from our consideration set. 

https://osf.io/74596/
https://osf.io/74596/


 

 

We managed to successfully reproduce the statistical results for 212 of the 223 studies, 

barring a few minor discrepancies (e.g., managing to reproduce the t-stats and the p-value but not 

the regression coefficient, or managing to reproduce the overall significance level but not the 

exact p-value). We were unable to reproduce the results of the remaining 11 studies (either 

because the code, data, and/or pre-registration did not contain enough information to reproduce 

the results; because the pre-registered outcome was not reported in the paper; or because of 

major numerical discrepancies between the reported and re-calculated results). 

 

Simulating the Impact of PRIADs. Finally, we assessed the counterfactual impact of 

running PRIADs. For parsimony, we consider the four possible “off-the-shelf” PRIADs 

described in Appendix A. For each of the 212 studies that we successfully reproduced, we 

divided the raw data into the appropriate number of equal-sized batches (i.e., two batches 

respectively containing 50% and 100% of the observations for the two-stage PRIADs; and four 

batches respectively containing 25%, 50%, 75% and 100% of the observations for the four-stage 

PRIADs). When the data of a study includes a timestamp (specifying the time at which each 

observation was collected), we define the batches by the order in which participants completed 

the study. For the other studies, we generated the batches by randomly shuffling the order of the 

participants8. We then applied the R code we wrote to these batches to obtain the counterfactual 

impact of using PRIADs. 

 

Results 

 
8 To ensure that our results are consistent across possible permutations of the data, we report the 

average outcomes and savings across these 1,000 random shuffles. Given that (i) most studies report 

timestamps and (ii) the large number of studies in our sample, we find very minimal variations across 

shuffles. 



 

 

 

We report two types of results. First, we assess the outcomes of running the PRIADs: 

Would the researcher have found a statistically significant result early (and if so, at which stage)? 

If not, would the researcher still have found a significant result at the final analysis? Next, we 

quantify the cost-savings afforded by PRIADs: How many observations would have been 

collected by the researchers if they had used these designs? 

 

Outcomes. Using Fixed N designs, researchers always collected 100% of the participants, 

and found significant results in 96% of the studies. Figure 5 below compares the outcomes of 

this Fixed N approach to the counterfactual outcomes that would have been obtained by running 

each of the four different kinds of PRIADs we considered.  

 

FIGURE 5 

OBSERVED AND COUNTERFACTUAL OUTCOMES OBTAINED BY FIXED N DESIGNS 

AND FOUR KINDS OF PRIADs 



 

 

 

 

Looking at the “Two Stages” PRIADs first (top panel), we see that researchers would 

have, for many studies, collected only half of the planned sample: The two-stage Pocock and 

O’Brien-Fleming PRIADs would have respectively found a significant result halfway through 

data collection in 63% and 43% of the studies. Importantly, the overwhelming majority of the 

studies that yielded a significant result with a Fixed N design would have also reached statistical 

significance with a two-stage PRIAD: 99% of the originally significant studies delivered a 

significant result with the O’Brien-Fleming correction, and 95% with the Pocock correction. 

Looking at the “Four Stages” PRIADs next (bottom panel), we see that a non-trivial 

number of studies would have produced a significant result after only collecting a quarter of the 

planned sample (38% with the Pocock and 14% with the O’Brien-Fleming correction). However, 

the ability to terminate data collection earlier means (as expected) a greater decrease in statistical 



 

 

power at the final stage: 81% of the studies that were significant with a Fixed N remained 

significant with the Pocock correction, and 97% with the O’Brien-Fleming correction. 

 

Expected Savings. For the 204 studies that delivered significant results with a Fixed N 

approach, researchers recruited an average of 716 participants (min = 100, median = 516, max = 

4,040). How many fewer participants would have been recruited if researchers had used a 

PRIAD instead? 

While it is straightforward to compute the savings of early stops (e.g., a study stopped at 

25% of the data collection would save 75% of the participant costs), or of PRIADs that deliver a 

significant result at the final stage (such studies would save 0% of the participant costs), it is less 

clear how to factor in the studies that were significant with a Fixed N approach, but wouldn’t 

have turned out significant with a PRIAD. In our cost-savings calculations, we make the 

conservative assumption that such studies would be re-run as Fixed N designs with twice the 

original sample size. For example, a significant Fixed N study that collected 100 participants but 

failed to deliver significant results with a PRIAD would be coded as having collected 300 

participants, delivering cost-savings of -200%.  

Even with the sizeable penalty we imposed on non-significant results, our analysis 

suggests that PRIADs would have helped the researchers save money. Table 2 shows, across all 

studies in our data that were significant with a Fixed N design, how many fewer participants 

would have been collected by each of the four types of PRIADs (compared to the Fixed N 

designs originally used by researchers)9. 

 
9
 If we alternatively consider that a “failed” study would be re-run with the same (rather than double the) 

sample size, we find larger cost-savings: 33% for the two- and four-stage Pocock, and 22% (30%) for the two-stage 

(four-stage) O’Brien-Fleming. 



 

 

 

TABLE 2 

COST-SAVINGS ACHIEVED BY FOUR DIFFERENT KINDS OF PRIADs 

 Pocock O’Brien-Fleming 

Two Stages 29% 21% 

Four Stages 20% 27% 

 

NOTE. — The cost-savings are calculated across all 204 reproducible studies that were 

significant with a Fixed N, averaged across the 1,000 random shuffles. 

 

WHEN NOT TO USE PRIADS? 

 

The results previously reported show that PRIADs have the potential to unlock 

significant savings for researchers. This tool, however, is not appropriate in all circumstances. 

First, PRIADs are not particularly valuable when the marginal cost of data collection is 

very low, or even null. Consider for instance a researcher who has reached an agreement with a 

company to email a survey to all customers of the business. Since the added cost of emailing all 

the customers (vs. half of them) is zero, the cost-savings potential of using a PRIAD is non-

existent: The researcher will be better-off using a Fixed N design.  

Second, using PRIADs is also not recommended when the cost of losing power is very 

high. Consider a researcher running an experiment that would be very difficult to repeat (e.g., 

because it requires a very specific sample of respondents; or a unique set of circumstances). 

Here, the researcher’s chief concern will be that, if there is an effect, they are able to detect it: 

They would not want to use a PRIAD which would lower their chance of finding a significant 

effect in this particular experiment. 



 

 

Third, PRIADs are not suited to studies without pre-determined hypotheses of interest. 

Indeed, PRIADs require researchers to specify and pre-register well-defined null hypothesis. As 

such, they are not appropriate in the early stage of research projects, when researchers typically 

need freedom to explore patterns in their data and develop hypothesis (Janiszewski and van 

Osselaer 2021). 

Fourth, PRIADs are not recommended when the goal of an experiment is to provide a 

precise estimate of a meaningful quantity. Indeed, while the majority of consumer behavior 

papers seek to establish the existence of an effect (e.g., whether subjective time periods explain 

time-inconsistent preferences; Jang and Urminsky 2023), other papers instead try to estimate the 

magnitude of effects on the marketplace (e.g., quantifying the impact of price promotions on 

food waste; van Lin et al. 2023). In the latter type of investigations, researchers will want to 

achieve as much precision as possible in their estimates: It is therefore not advisable to apply a 

method that will stop data collection as soon as a significant effect is detected. In addition, the 

effect size obtained from a single group sequential design tends to be larger than the effect size 

obtained from a Fixed N study10. If the goal of a given study is to generate a precise and 

unbiased estimate of the population effect size, we advise researchers to stick to Fixed N designs. 

 

GENERAL DISCUSSION 

 

Summary 

 

 
10 This is only true of single studies: Meta-analysis of group sequential designs converge to the same effect 

size as meta-analysis of Fixed N studies. We provide a more comprehensive treatment of this issue in the general 

discussion. 



 

 

The cost of doing consumer research has significantly increased over the past decade: A 

typical marketing paper now features more studies, with larger sample sizes, from harder-to-

reach respondents, and with tighter control over researchers’ degrees of freedom. While these 

changes are benefiting the field’s ability to discover true and replicable findings, they are 

requiring researchers to find more efficient ways to collect and analyze data. 

To this end, we introduced PRIADs: A framework based on group sequential designs that 

allows researchers to conduct interim analysis on their data without inflating the false-positive 

rates of their experiments. Our hope is that PRIADs will encourage the adoption of group 

sequential designs by the large and diverse audience of consumer researchers. We believe that 

our proposal addresses the three challenges that have so far limited their adoption. 

First, PRIADs reduce the apparent complexity of group sequential designs. PRIADs 

manage this complexity by allowing researchers to design them in five simple decisions, by 

providing sensible defaults and rule of thumbs for each decision, and by introducing an 

interaction web application to help researchers design and use PRIADs. 

Second, PRIADs alleviate potential concerns about the legitimacy of group sequential 

designs, and limit the likelihood that the greater flexibility of group sequential designs will result 

in uncontrolled researchers’ degrees of freedom. Since PRIADs require researchers to commit 

and document their experimental procedure ex-ante, they ensure that the adoption of group 

sequential designs will not inflate false-positive rates. 

Third, PRIADs offer demonstrable value to marketing researchers. We have shown that 

PRIADs can help researchers design appropriately powered studies in the presence of effect size 

uncertainty, can be used to design more efficient pilot studies, and most importantly allow 

researchers to achieve equivalent levels of power while collecting fewer observations. Beyond 



 

 

the obvious cost-savings implications of this greater efficiency, the ability to collect fewer 

observations will also benefit researchers collecting data from hard-to-reach (e.g., marketing 

managers and executives) or vulnerable (e.g., low-income consumers, children) populations. 

 

Limitations of PRIADs 

 

While PRIADs, when used in appropriate circumstances, can unlock significant benefits 

for researchers, it is important to acknowledge and understand some of their limitations. 

 

PRIADs Distort p-values and Confidence Intervals. A downside of group sequential 

designs (and thus of PRIADs) is that the statistics typically reported by marketing researchers 

(i.e., p-value, confidence intervals, and effect size) are less straightforward to interpret. 

Let us discuss p-values first. In a Fixed N experiment, a p-value represents the likelihood 

of obtaining a result at least as extreme as that of the statistical test under the null. A p-value of 

.05 means that, when the null is true, the researcher will observe a result more extreme only 5% 

of the time. In a sequential design, this definition no longer holds, because researchers are 

performing multiple non-independent statistical tests.  

To illustrate this issue, consider for example a Pocock-based PRIAD with two stages. To 

keep the overall alpha at .05, the researcher will reject the null only if p < .0294 at each of the 

two stages. In plain words, it means that obtaining p < .0294 on either of the two stages is 

something that, under the null, will happen only 5% of the time (and not 2.94% of the time). A p-

value obtained from a group sequential design therefore no longer matches its traditional 

definition. Since confidence intervals and p-values share the same mathematical underpinnings, 



 

 

the same issue applies to them: Confidence intervals derived from a sequential design will not 

have the expected coverage. 

Statisticians have proposed approaches to “correct” the p-values and confidence intervals 

reported by sequential analysis (e.g., Jennison and Turnbull 1999; Proschan, Lan and Wittes 

2006). However, other researchers have expressed doubts that these adjusted p-values contain 

meaningful information (Lakens, Pahlke and Wassmer 2021). Indeed, in the null-hypothesis 

significance testing (NHST) framework under which experimental consumer research operates, 

the important information is not the exact p-value: It is whether the statistical test rejects the null 

or not at the preset alpha level. As we have extensively discussed, this goal will be achieved by 

PRIADs: Across all statistical tests, a PRIAD will incorrectly reject the null when the null is true 

exactly 5% of the time. 

For these reasons, we recommend that researchers do not compute adjusted p-values and 

confidence intervals when reporting the results of PRIADs, and instead report them as 

“sequential p-values” and “sequential confidence intervals”. These labels will ensure that the p-

values are not included in p-value meta-analyses (i.e., a z-curve; Bartoš and Schimmack 2022; or 

a p-curve; Simonsohn, Nelson and Simmons 2013)11. 

 

PRIADs Lead to Inflated Effect Sizes in Single Studies (but not in Meta-Analysis). Next, 

let us discuss the impact of PRIADs on effect sizes. PRIADs allow researchers to interrupt data 

collection in case of an early rejection of the null hypothesis. These early rejections are more 

likely when the observed effect size is unexpectedly large, which means that effect sizes 

 
11

 To the extent that p-value meta-analysis is mostly used to detect and assess the impact of uncontrolled 

use of researchers’ degrees of freedom (“p-hacking”), it is unclear why it would be applied to p-values obtained 

from PRIADs (which are by definition pre-registered). 



 

 

obtained from early stops will overestimate the true effect size. In addition, early rejections are, 

by definition, significant, and conditioning on statistical significance leads to inflated effect sizes 

(Ioannidis 2008). In contrast, the experiment will tend to proceed to the final stage only when the 

observed effect size is unexpectedly small, which means that effect sizes obtained from the final 

analysis will underestimate the true effect size. 

While one might expect the underestimation and the overestimation to cancel out, this is 

not the case. Since effect sizes from early stops are 1) computed on smaller samples and 2) 

selected to be significant, they overestimate the true effect more than effect sizes obtained at the 

final stage underestimate it. Consequently, the observed effect sizes obtained from individual 

PRIADs tend to be inflated. 

Fortunately, meta-analytical effect sizes computed from multiple PRIADs are not 

affected by this inflation and will converge to the same value as meta-analytical effect sizes 

obtained from Fixed N studies. Indeed, since the effect sizes obtained from interim analyses have 

higher standard errors, they will be given less weight in the meta-analysis (Schönbrodt et al. 

2017; Senn 2014). We refer the reader to simulations in the Web Appendix illustrating these 

results: We replicate (i) an effect size inflation in single studies and (ii) a convergence to the 

same effect size as Fixed N studies in meta-analyses. 

We thus suggest caution when interpreting the effect size observed in individual PRIADs. 

In particular, researchers should not use the effect sizes derived from early peeks to determine 

their sample size for future studies: This will lead to overestimate the amount of power they 

have12. On the other hand, researchers can be confident that using PRIADs will not bias the 

 
12 We thank an anonymous reviewer for this excellent point. 



 

 

results of future meta-analysis, and that they can use meta-analytical effect sizes derived from 

PRIADs as inputs in their sample size decisions. 

 

When the Researchers’ Hypothesis is Wrong, PRIADs Will Collect Many Observations. 

Our results have emphasized that, under reasonable levels of statistical power, PRIADs will save 

researchers money. However, researchers sometimes have incorrect intuitions about human 

behavior, and will design studies in which the effect size is so small the null hypothesis is 

effectively true. In these circumstances, the most likely outcome for a PRIAD is to collect the 

full MaxN (which is costly) and produce a non-significant result (which is often disappointing). 

There are two potential solutions to this issue. 

First, if the perspective of collecting a large sample for a null result is particularly 

aversive to the researcher, they can make use of futility thresholds to minimize the odds that an 

unpromising study will run to its completion: While stopping for futility reduces the overall 

power of a PRIAD, it will help researchers avoid this “worst-case scenario”. 

Alternatively, researchers can recognize that a null result from a well-designed PRIAD 

conveys valuable information. Indeed, one of the benefits of PRIADs is that (unlike Fixed N 

studies) they are not powered to capture an average expected effect size: They are powered to 

capture the smallest effect that a researcher is interested in (if MaxN was derived from the 

Smallest Effect Size of Interest) or can afford to study (if MaxN was derived from cost or 

feasibility concerns). As such, a PRIAD that fails to produce a significant effect provides an 

informative signal that the hypothesized effect is smaller than what the researcher can or wants 

to investigate, which should prompt them to divert resources to other projects.  

 



 

 

Potential Alternatives to PRIADs 

 

PRIADs reflect an attempt to strike a balance between three key goals: (i) increase the 

cost-effectiveness of confirmatory hypothesis testing for marketing researchers, (ii) manage the 

complexity of designing and running experiments, and (iii) prevent a larger number of false-

positives from entering the marketing literature. As such, other sequential analysis techniques 

that are either less relevant to confirmatory hypothesis testing or more complex to implement, or 

more likely to result in uncontrolled researchers’ degrees of freedom, were left out of this 

proposal. In this section, we briefly describe two of these related techniques and when they 

might be useful for consumer researchers. 

First, a type of design called adaptive trials—often implemented as multi-arm bandits—

afford even more flexibility to researchers. These designs allow researchers, based on the 

evidence accumulated so far, to interrupt data collection for significance or futility, but also to 

drop experimental conditions, change the allocation ratio to the different conditions, over-sample 

individuals or stimulus who are showing promising results, and so on. These adaptive trials are 

well-suited to situations where researchers are comparing the performance of many different 

conditions. In quantitative marketing, recent papers have used these methods to increase the 

efficacy of dynamic pricing (Misra, Schwartz and Abernethy 2019) and the effectiveness of 

display ads (Schwartz, Bradlow and Fader 2017). A recent working paper also makes a 

convincing case that behavioral “megastudies” (which test the effectiveness of many possible 

treatments; e.g., Milkman, Gromet, et al. 2021; Milkman, Patel, et al. 2021) might also be 

improved by adaptive trials techniques (Bowen, Green and Simmons 2022).  



 

 

Second, a different approach to statistical testing, called likelihood-ratio tests, allow 

researchers to continuously monitor data collection, effectively allowing infinite peeks. In 

exchange for this flexibility, these tests require the researcher to specify an explicit alternative 

hypothesis (e.g., H1: d = .2) in addition to the null hypothesis (typically H0: d = 0). Data 

collection is terminated once sufficient evidence has been accumulated to accept one of these 

two candidate hypotheses. These tests are, by the Neyman-Pearson lemma (Neyman and Pearson 

1933), the most efficient of all (i.e., they achieve the most power per sample size); but their 

implementation is not straightforward, as specific estimators must be constructed and validated 

for different kinds of statistical procedure (e.g., Hajnal 1961; Schnuerch and Erdfelder 2020 for 

the t-test). In addition, the specification of an alternative hypothesis requires a mindset shift from 

the traditional null hypothesis significance testing framework under which most of behavioral 

science operates. For both reasons, we fear that there currently are significant barriers to the 

adoption of these techniques.  

 

CONCLUSION 

 

To produce rigorous and relevant insights with finite resources, marketing researchers 

need experimental designs that can achieve high levels of statistical power without collecting an 

inordinate amount of data, all the while maintaining false-positives to a nominal level. Previous 

tutorials (e.g., Meyvis and Van Osselaer 2018; Oppenheimer, Meyvis and Davidenko 2009; 

Sawyer and Ball 1981) had highlighted how attention checks, statistical controls, participant 

exclusion rules, or within-subject designs can help researchers “boost” their effect size, and 

therefore achieve higher statistical power. In this tutorial, we introduced another tool to help 



 

 

researchers increase the efficiency of their experiments: Pre-Registered Interim Analysis Designs 

(PRIADs). PRIADs allow researchers to plan an experiment in which data is collected and 

analyzed in batches by answering five simple questions. To help researchers adopt PRIADs, we 

have provided sensible defaults to help them answer these questions, and programmed a 

companion app called PRIApp, available at the following address: 

https://priadconsumerresearch.shinyapps.io/PRIApp/.  

We have shown that adopting PRIADs have significant benefits for marketing 

researchers. We have explained how this method helps researchers manage effect size 

uncertainty, allows them to conduct pilot studies without wasting data, and most importantly 

increases the efficiency of data collection. We have also demonstrated that the greater efficiency 

of PRIADs can provide valuable savings to marketing researchers: A re-analysis of JCR 

experiments suggest that researchers would have saved between 20% and 29% of the original 

participant costs by running PRIADs.  

We see these benefits as particularly attractive when running studies with large sample 

sizes, or for which the per-observation cost is high (e.g., incentive-compatible designs, or 

experiments in which participants’ compensation is expensive). On the other hand, PRIADs 

might be less valuable for studies in which the logistical costs of interrupting and restarting data 

collection would not outweigh the potential savings of early termination, or for studies in which 

the precision of the estimated effect matters more than the significance level. We hope that, by 

embracing PRIADs, marketing researchers can continue producing high-quality studies at a 

lower cost. 

  

https://priadconsumerresearch.shinyapps.io/PRIApp/


 

 

DATA COLLECTION STATEMENT 

 

No primary data was collected for this paper. The two authors jointly identified, downloaded, 

and attempted to reproduce the results of the Journal of Consumer Research articles mentioned in 

the paper between August 2023 and April 2024. The first author wrote the code of the 

simulations and statistical analyses reported in the paper, and wrote the code for the PRIApp. 

Both authors have reviewed and jointly approve of the results reported in the paper. The data, 

code, and materials required to reproduce all results reported in this paper and its appendixes are 

available on the OSF repository of the project: https://osf.io/74596/. 

 

https://osf.io/74596/


 

 

APPENDIX A: “OFF-THE-SHELF” PRIADs 

 

This flowchart should not be taken as offering “correct” choices: only as suggestions that researchers can use. We also encourage 

researchers to use the PRIApp to simulate the impact of these defaults.  

  

https://priadconsumerresearch.shinyapps.io/PRIApp/


 

 

APPENDIX B: REJECTION THRESHOLDS 

 

PRIAD Type First Stage Second Stage Third Stage Fourth Stage 

Two-Stage Pocock .0294 .0294   

Three-Stage Pocock .022 .022 .022  

Four-Stage Pocock .0182 .0182 .0182 .0182 

Two-Stage O’Brien-Fleming .0052 .048   

Three-Stage O’Brien-Fleming .0005 .0137 .0452  

Four-Stage O’Brien-Fleming .0001 .0042 .0194 .0429 

 

These rejection thresholds assume equally-spaced stages. To compute rejection 

thresholds for unequally-spaced stages, we recommend using the PRIApp, the R package rpact, 

or the SAS procedure SEQDESIGN. 

  



 

 

APPENDIX C: PRE-REGISTRATION TEXT 

 

Researchers wanting to run a PRIAD should add the following text to a comprehensive 

pre-registration specifying (i) the design of the experiment, (ii) any data exclusion that will be 

performed on the data prior to analysis, (iii) the exact statistical test that will be performed 

(including description of the independent variable, dependent variable, and control variables): 

 

Following our Pre-Registered Interim Analysis Design (PRIAD; [REDACTED FOR 

PEER REVIEW] 2023), we will collect up to {MaxN} observations and perform {N_Stages} 

analysis in total. We will test for significance at N = [{Sample_Stage_1}, {Sample_Stage_2}, 

…]. According to the {Pocock (1977) | O'Brien-Fleming (1979)} correction, we will reject the 

null and stop data collection if p is respectively smaller than [{Rejection_Threshold_1}, 

{Rejection_Threshold_2}, …] at each of these stages. 

 

Researchers can also use the PRIApp to automatically generate the pre-registration text 

corresponding to their choice of PRIAD.   



 

 

APPENDIX D: REPORTING EXAMPLES 

 

Case 1: A significant result is found at the first of three peeks. 

Following our pre-registered three-stage Pocock design with equally spaced peeks, we 

set to collect up to 600 participants in three batches. At each stage, we set to reject the null if p is 

respectively smaller than [.022; .022; .022]. A two-sample t-test performed after collecting 33% 

of this data (N = 200) revealed a significant difference between conditions: t(198) = 2.921, 

sequential p-value = .004, d = 0.413. 

 

Case 2: A significant result is found at the third of four peeks. 

Following our pre-registered four-stage O’Brien-Fleming design with equally spaced 

peeks, we set to collect up to 800 participants in three batches. At each stage, we set to reject the 

null if p is respectively smaller than [.0001, .0042, .0194, .0429]. The first two interim analyses 

(performed on N = 200 and N = 400) revealed no significant differences between conditions. 

The third interim analysis (N = 600) revealed a significant difference between conditions: t(598) 

= 2.432, sequential p-value = .015, d = 0.199. 

 

Case 3: A significant result is found at the end of data collection. 

Following our pre-registered two-stage Pocock design with equally spaced peeks, we set 

to collect up to 300 participants in two batches. At each stage, we set to reject the null if p is 

respectively smaller than [.0294, .0294]. The interim analysis (performed on N = 150) revealed 

no significant differences between conditions. The final analysis performed on the full data (N = 

300) revealed a significant difference between conditions: t(298) = 5.342, sequential p-value < 

.001, d = 0.617.  
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